metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

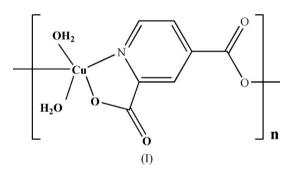
Li-Bin Wang,^a* Ya-Ru Pan,^a Pei-Ying Zhan,^a Yan-Ling Niu^a and Gao-Quan Zhang^b

^aDepartment of Chemistry, Tong Hua Teachers' College, Tong Hua 134002, People's Republic of China, and ^bDepartment of Politics and Law, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: wanglb223@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.097 Data-to-parameter ratio = 14.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[diaquacopper(II)]- μ -pyridine-2,4dicarboxylato- $\kappa^3 N$, O^2 : O^4]

In the title polymer, $[Cu(C_7H_3NO_4)(H_2O)_2]_n$, the Cu^{II} ion is pentacoordinated and exhibits a distorted square-pyramidal environment formed by one N atom and two O atoms from pyridine-2,4-dicarboxylate ligands and two O atoms from coordinated water molecules. Each pyridine-2,4-dicarboxylate ligand bridges two Cu^{II} ions, to generate an infinite zigzag chain. Adjacent chains are linked by O–H···O hydrogen bonds, forming a three-dimensional network.

Comment

Pyridine-2,4-dicarboxylate, a non-linear multidentate ligand, can also be a good linker, because it can tolerate a distortion in its molecular geometry, resulting in an expansion of the angle between coordination sites (Min *et al.*, 2001; Liang *et al.*, 2002; Sileo *et al.*, 2003; Tong *et al.*, 2005). We report here the structure of such a pyridine-2,4-dicarboxylate-containing coordination polymer, the title compound, (I).

As shown in Fig. 1, the Cu^{II} ion in (I) adopts a squarepyramidal geometry and is coordinated by four O atoms, two of which belong to the two carboxylate groups of the pyridine-2,4-dicarboxylate ligand and two of which are from coordinated water molecules; one pyridine N atom completes the fivefold coordination environment around the metal centre. Geometric parameters (Table 1) are within normal ranges (Min *et al.*, 2001).

The pyridine-2,4-dicarboxylate ligand acts as a bridge *via* carboxylate atom O3, linking monomeric units in a head-to-tail fashion. This behaviour results in an infinite zigzag chain running along the [010] axis. Adjacent chains in the crystal structure are further extended into a three-dimensional network by extensive hydrogen bonds between coordinated water molecules and carboxylate O atoms (Fig. 2 and Table 2).

Experimental

© 2007 International Union of Crystallography All rights reserved Cu(MeCO₂)₂·H₂O (0.199 g, 1 mmol), pyridine-2,4-dicarboxylic acid (0.166 g, 1 mmol), sodium hydroxide (0.040 g, 1 mmol) and water

Received 7 November 2006 Accepted 6 December 2006 (14 ml) were placed in a 23 ml Teflon-lined autoclave, which was heated at 423 K for 3 d. After the mixture had cooled slowly to room temperature at a rate of 10 K h^{-1} , blue block-shaped crystals of (I) were isolated from the solution.

Z = 4

 $D_x = 2.071 \text{ Mg m}^{-3}$

 $0.27 \times 0.22 \times 0.19 \text{ mm}$

5016 measured reflections

1957 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0555P)^2]$

+ 0.1458P] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\rm max} = 0.81 \text{ e} \text{ Å}^{-3}$

1620 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 2.58 \text{ mm}^{-1}$

T = 293 (2) K

Block, blue

 $R_{\rm int} = 0.041$

 $\theta_{\rm max} = 28.0^{\circ}$

Crystal data

 $\begin{bmatrix} Cu(C_7H_3NO_4)(H_2O)_2 \end{bmatrix} \\ M_r = 264.68 \\ Monoclinic, P2_1/n \\ a = 7.1529 (10) Å \\ b = 13.5737 (18) Å \\ c = 9.1813 (13) Å \\ \beta = 107.797 (2)^{\circ} \\ V = 848.8 (2) Å^3 \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.522, T_{\max} = 0.620$

Refinement

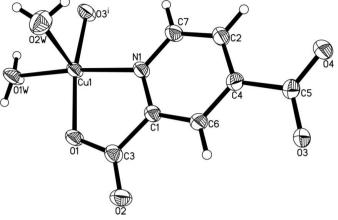
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.097$ S = 1.041957 reflections 136 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

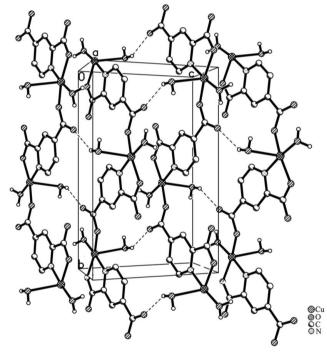
Cu1-O1W	1.923 (2)	Cu1-N1	1.982 (2)
Cu1-O3 ⁱ	1.9262 (19)	Cu1 - O2W	2.345 (2)
Cu1-O1	1.9461 (19)		
O1W-Cu1-O3 ⁱ	93.23 (8)	O1-Cu1-N1	82.79 (9)
O1W-Cu1-O1	91.46 (8)	O1W-Cu1-O2W	91.44 (9)
$O3^i - Cu1 - O1$	165.62 (9)	$O3^i - Cu1 - O2W$	89.16 (8)
O1W-Cu1-N1	174.24 (9)	O1-Cu1-O2W	104.31 (9)
O3 ⁱ -Cu1-N1	92.26 (9)	N1-Cu1-O2W	90.37 (8)

Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.


Hydrogen-bond	geometry	(A, °]).
---------------	----------	--------	----

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline \\ O1W-H1WA\cdots O1^{ii} \\ O1W-H1WA\cdots O2^{ii} \\ O1W-H1WB\cdots O4^{i} \\ O2W-H2WA\cdots O2^{iii} \\ O2W-H2WB\cdots O4^{iv} \\ \end{array} $	0.86	1.82	2.664 (3)	169
	0.86	2.65	3.139 (3)	118
	0.84	1.83	2.659 (3)	167
	0.83	1.99	2.822 (3)	174
	0.83	2.37	3.107 (3)	149

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) -x + 3, -y + 2, -z + 2; (iii) $-x + \frac{5}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 1, -y + 2, -z + 1.


Water H atoms were located in a difference map and refined as riding in their as-found relative positions, with $U_{\rm iso}({\rm H}) = 1.5_{Ueq}({\rm O})$. Other H atoms were placed in calculated positions and refined as riding on their parent atoms, with C-H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*;

Figure 1

The asymmetric unit of (I), together with a symmetry-generated atom to complete the coordination of Cu1, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.]

program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Siemens, 1998); software used to prepare material for publication: *SHELXTL-Plus*.

The authors thank Tong Hua Teachers' College, China, for support of this work.

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liang, Y., Cao, R., Hong, M., Sun, D., Zhao, Y., Weng, J. & Wang, R. (2002). Inorg. Chem. Commun. 5, 366–368.

- Min, D., Yoon, S. S., Jung, D.-Y., Lee, C. Y., Kim, Y., Han, W. S. & Lee, S. W. (2001). Inorg. Chim. Acta, 324, 293–299.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1998). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sileo, E. E., de Araujo, A. S., Rigotti, G., Piro, O. E. & Castellano, E. E. (2003). J. Mol. Struct. 644, 67–76.
- Tong, M.-L., Hu, S., Wang, J., Kitagawa, S. & Ng, S. W. (2005). Cryst. Growth Des. 5, 837–839.